
Zeegee Software Inc.
http://www.zeegee.com/

A Crash Course in

Perl5
Part 6: Object-oriented programming

z e e g e e
s o f t w a r e

http://www.zeegee.com/

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-2

Terms and Conditions
These slides are Copyright 2008 by Zeegee Software Inc. They have been
placed online as a public service, with the following restrictions:

You may download and/or print these slides for your personal use only.
Zeegee Software Inc. retains the sole right to distribute or publish these
slides, or to present these slides in a public forum, whether in full or in part.

Under no circumstances are you authorized to cause this electronic file to be
altered or copied in a manner which alters the text of, obscures the
readability of, or omits entirely either (a) this release notice or (b) the
authorship information.

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-3

Road map
• Basics

– Introduction
– Perl syntax
– Basic data types
– Basic operators

• Patterns
– Introduction
– String matching and modifying
– Pattern variables

• Data structures
– LISTs and arrays
– Context
– Hashes

• Flow control
– Program structures
– Subroutines
– References
– Error handling

• Data
– Input and output
– Binary data
– Special variables

• Object-oriented programming
– Modules
– Objects
– Inheritance
– Tying

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-4

Modules
OOP

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-5

Packages

• Packages in Perl are like packages in Ada. They allow
code from many different developers to be combined
with very low risk of naming conflicts.

• Each package defines its own namespace. To
reference a global $VarName in another package, code
in your package would have to refer to it like this...

$OtherPackage::VarName

• The default package is main, and $main::sail
may be abbreviated as $::sail

OOP / Modules

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-6

Using packages

• Here's a simple program...

OOP / Modules

#!/usr/bin/perl -w;
 # package is main initially
$side = 'Us';

package Other; # package is Other at this point
$side = 'Them';
print "Other> \$side = $side\n";
print "Other> \$main::side = $main::side\n";
print "Other> \$Other::side = $Other::side\n";

Other> $side = Them
Other> $main::side = Us
Other> $Other::side = Them

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-7

Nesting packages

• Packages may be nested... so inside Outer::, you
can have package Outer::Inner , with vars like
$Outer::Inner::var.

• You must always use the full package name to refer
to something outside your own package... so inside
Outer:: , you can't just say $Inner::var : you have
to use the full name.

• Each package has its own symbol table where it keeps
the values of all identifiers (variables, subroutines, etc.)
defined to belong to that package.

OOP / Modules

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-8

What gets packaged?

• Only identifiers starting with letters or underscores
are stored in a package's symbol table

• All other symbols (e.g., special variables like $/ and even
$_) are forced to belong to package main::

• As a special case, the following symbols are also forced
to belong to main::

STDIN ENV ARGV
STDOUT INC ARGVOUT
STDERR SIG

OOP / Modules

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-9

Modules

• A module is just a package which has been placed into a
source file with the name "package.pm".

• Generally pulled in via use().

• Modules are designed to hold reusable code...

– They may contain useful functions, which use() will
import directly into the "user's" namespace for
convenience.

– They may contain OO code, which provides class and
method definitions without namespace corruption.

OOP / Modules

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-10

A sample module
In file Phaser.pm...

package Phaser; # begin Phaser:: namespace
use strict; # helps catch many, many errors

$Id = '$Header: Phaser.pm v.3.4 mscott $';
@Levels = qw(STUN HEAVYSTUN KILL BARBEQUE);

sub stun { print "Stun $_[0]: Zap!\n"; }
sub kill { print "Kill $_[0]: ZZZZZZAP!\n"; }
sub down { print "Charging down\n"; }

1; # make sure Phaser loads okay

OOP / Modules

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-11

Code organization

• Here's how the packages comprising a possible program,
mission, might be organized:

OOP / Modules

package Phaser;

$Id = "...";
@Levels = ...;

sub stun {... }
sub kill {...}
sub down {...}

Phaser.pm Beam.pm

#!/usr/bin/perl -w
use strict;
use Phaser;
use Beam;

Beam::down(PLANET);
Phaser::stun(ALIEN);
Beam::up();
Phaser::down();

mission

package Beam;

$Id = "...";

sub down { ... }
sub up {...}

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-12

BEGIN / END

• There are two special subroutines that you can define in a
package to initialize/deinitialize it:

– BEGIN() will get called as soon as it is completely
defined, even before the rest of the package is parsed.

– END() is executed as late as possible, usually as the
result of calling die().

• The sub keyword is optional when defining them

• You can have multiple BEGIN blocks (which are called in
order of definition) and multiple END blocks (which are
called in reverse order of definition).

OOP / Modules

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-13

require()

• require will ensure that the contents of a module are
loaded, without importing any symbols into your package's
namespace:

require ProofOfPurchase;

• To access anything in that module, you would have to
qualify it with the package name:

$date = $ProofOfPurchase::Date;

• But use() is preferred...

OOP / Modules

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-14

use()

• Use use to ensure that the contents of a module are
loaded, and, to import any symbols into your package's
namespace that...

– the module wishes to export, and...
– that you wish to import

• There are 3 basic forms you will see...

use Phaser; # imports @EXPORT
use Phaser qw(stun $ID); # imports just these
use Phaser (); # imports nothing

OOP / Modules

Preferred over require Phaser;

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-15

Importing with use()

• If the package being used inherits from Exporter, then
you cannot import any symbols that aren't in that
package's @EXPORT or @EXPORT_OK

• Any symbols you import are now part of your package:

stun($foe); # stun() imported from Phaser

• Symbols that were not imported must be qualified with
the package name:

Phaser::kill();

OOP / Modules

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-16

require vs. use

The statement:

use Module LIST;

Is exactly equivalent to:

BEGIN {
 require Module;
 import Module LIST;

 }

And since BEGIN blocks are evaluated at compile time,
so are "use" statements.

OOP / Modules

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-17

@INC

• List of directories to look for files/modules referenced
by require and use.

• Initially consists, in order, of...

– Any -I arguments to Perl (just like cc)

– The default Perl library directory

– "." (the current working directory)

• May be modified by your program at any point

OOP / Modules

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-18

Altering @INC, and "use"

Careful! Since "use" statements are executed at compile
time (as soon as they are parsed), the following will not work:

• If you modify @INC, you must do so inside a BEGIN{...}
block that precedes the first "use" statement:

• Best bet:

OOP / Modules

push @INC, "/my/perl/dir";
use MyModule;

BEGIN { push @INC, "/my/perl/dir" }
use MyModule;

use lib "/my/perl/dir";
use MyModule;

NO!

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-19

Extension modules

• If you have a C library you’d like to call directly from Perl,
you can do so if your Perl5 has been installed to support
dynamic loading.

• Modules that provide an interface to underlying C/C++
functions are called extension modules. They look just
like ordinary modules to the outside world.

Socket:: interface to BSD socket library
Fcntl:: interface to file descriptor library
POSIX:: interface to POSIX routines

• Read the Perl XS and XS Tutorial manual pages for details...

OOP / Modules

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-20

Objects
OOP

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-21

Don’t panic!

• An object is simply a reference to a data structure
(scalar, hash, array) that happens to know which class it
belongs to.

• A class is simply a package that happens to provide
methods to deal with object references.

• A method is simply a subroutine that expects an object
reference (or, for “static” methods, a package name) as the
first argument.

OOP / Objects

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-22

The scenario...

• Let’s say we want to have a class, Person, where...

– Instances of Person have instance variables name (a
string), age (an integer), and hobbies (an array of
strings).

– Instances of Person have instance methods for
getting/modifying these variables

OOP / Objects

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-23

A class is just a package...

• ...So a good way to start is by creating a Person module
dedicated to our new Person package:

OOP / Objects

A class defining a person:
package Person;

...end of file: make sure it returns true!
1;

Person.pm

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-24

An object is just a reference

• An object is just a reference to a data structure.

• Most common data structure to use for objects is a hash,
since we can easily store/retrieve instance variables by name.

• The bless() function tells the data structure (e.g., the hash)
what class it belongs to. It's not an instance until it's blessed!

• Here’s a simple constructor, new(), which returns a new
Person as a reference to an initially-empty hash:

OOP / Objects

package Person;
sub new { # constructor: create and return a new Person...
 my $self = { }; # ref to an empty hash
 bless $self; # bless and return $self
}

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-25

A method is just a subroutine

• A static method (or class method) is a subroutine which:

– Takes the class as its first argument (often ignored)

– Provides functionality for the class as a whole (e.g.,
construct an object, look up an object by name, etc.)

• A virtual method (or instance method) is a subroutine
which:

– Takes an object reference as its first argument (usually
shifted into a variable called $self or $this)

– Provides functionality for a single object (e.g., access/modify
an instance variable of the object, print the object, etc.)

OOP / Objects

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-26

Invoking methods

• You can use indirect object syntax...
$will = new Person "Riker";
output $will;

• You can use C++-style message syntax...
$will = Person->new("Riker");
$will->output();

• I like the latter when using message-chains:
Person->find("Riker")->output();

Unlike ordinary functions, the empty argument list () is
optional, and is assumed if not provided.

OOP / Objects

method class args, ...
method obj args, ...

class->method(args, ...)
obj->method(args, ...)

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-27

Invoking "unknown" methods

• Sometimes you want to call one of several similar methods,
but you don't know ahead of time which one you want. To
avoid excessive if-thens, you can put the method name in a
scalar:

The following assumes that the methods...
Person::name()
Person::formalname()
...are legal,and take their arguments identically...

$will = Person->find("Riker");
$getname = ($casual ? 'name' : 'formalname');
$name = $will->$getname();

OOP / Objects

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-28

bless(REF, PACKAGE)

• bless() takes the object referenced by REF, tells it that it
now belongs to the given PACKAGE, and then returns REF.

• If PACKAGE arg not given, defaults to caller’s package.

Think you might use inheritance? Then it’s more robust to
explicitly provide the PACKAGE (which is usually given by the
first argument to the constructor):

OOP / Objects

package Person;
use strict; # for safety!
sub new { # constructor...

my $class = shift; # get actual class of object being built
bless {}, $class; # bless and return ref to empty hash

}

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-29

More complex constructors

• Let’s do some initialization before returning the new object...

OOP / Objects

sub new { # constructor...
my $class = shift; # get actual class
my $self = {}; # create ref to empty hash

$self->{Name} = 'Anonymous'; # default name
$self->{Hobbies} = []; # empty array of hobbies

bless $self, $class; # bless and return object
}

in
Person.pm

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-30

Using constructors

• How do we create a new Person object? Like this:

• Remember, you can also use indirect object syntax:

OOP / Objects

#!/usr/bin/perl -w
use strict;
use Person; # load Person class

$person = Person->new(); # create a new Person
print $person->{Name}, "\n"; # prints "Anonymous"

$person = new Person();

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-31

Constructors with arguments

• Let constructor take name and age as optional arguments:

OOP / Objects

sub new {
my $class = shift; # get actual class
my $name = shift || 'Anonymous';
my $age = shift;
my $self = {}; # create ref to empty hash
$self->{Name} = $name;
$self->{Age} = $age;
$self->{Hobbies} = [];
bless $self, $class; # return object

}

$will = Person->new('W. Riker', 40);
$tasha = Person->new('T. Yar');

in
Person.pm

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-32

Sample virtual methods

• Let's add a method to output an individual Person:

OOP / Objects

sub output {
my $self = shift; # get the object

my $age = $self->{Age} || 'unknown';
my $hobbies = (int(@{$self->{Hobbies}}) ?

join(", ", @{$self->{Hobbies}}) : 'none');

print "Person:\n";
print " Name: $self->{Name}\n";
print " Age: $age\n";
print " Hobbies: $hobbies\n";
1; # always nice

}

in
Person.pm

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-33

More virtual methods

• Let's add some storage/access methods:

OOP / Objects

sub name { # Get the name...
my $self = shift;
$self->{Name};

}
sub set_name { # Set the name...

my ($self, $newname) = @_;
$self->{Name} = $newname;

}

$jeanluc = new Person('Picard');
$jeanluc->set_name('Capt. Picard');
print $jeanluc->name(), "\n"; # prints "Capt. Picard"

in
Person.pm

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-34

Destructors

• Objects are automatically destroyed when the last
reference to them goes away

• If you want to do something just before an object goes
away, provide a DESTROY method:

OOP / Objects

sub DESTROY {
my $self = shift;
print "$self->{Name}: ",

 "(cough) I'm... (gasp) dying...\n";
}

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-35

Inheritance
OOP

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-36

The scenario

• We want to create Doctor, a subclass of Person, where
Doctor has all the instance variables and methods of Person,
plus...

– Doctor has an additional instance variable, specialty

– Doctor has an additional virtual method, diagnose()

– Doctor's name() method is slightly different from
Person's name() method, in that it automatically puts the
title "Dr." in front

OOP / Inheritance

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-37

Defining a subclass

• We'll need a new module, called Doctor, of course:

• If we didn't need to add new instance variables or alter
functionality, we could stop right here: even inherited new()
will bless as Doctor, since we used 2-argument bless()!

OOP / Inheritance

package Doctor;
use strict;
use Person; # load parent class(es)
@ISA = qw(Person); # declare all parent classes

1; in
Doctor.pm

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-38

@ISA
• The @Class::ISA array holds the list of the names of all

parent classes of Class. Often listed in qw().

• If Class is asked to call a method fubar that it doesn't
recognize, classes in the @ISA array are traversed
recursively (depth-first, left-to-right) until fubar is found.

OOP / Inheritance

package Doctor;
use strict;
@ISA = qw(Person Printable);

$doctor = new Doctor;
$doctor->printme(); # okay, if Printable::printme exists!

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-39

Overriding constructors

• We want to use the same constructor as for Person, but...

–We want to initialize an additional inst. var, specialty

–We want to make sure new object is blessed as a Doctor!

OOP / Inheritance

sub new {
my $class = shift;
my $self = Person->new(@_); # call inherited constructor
bless $self, $class; # now, we're a Doctor!
$self->{Specialty} = 'GP'; # set Doctor's instance var
$self;

}
in

Doctor.pm

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-40

Adding methods

• It's easy to add a method to a subclass that isn't in the
superclass: just define it!

OOP / Inheritance

sub diagnose {
print "He's dead, Jim!\n";

}
in

Doctor.pm

Doctor->new('McCoy')->diagnose(); # okay
Person->new('Uhura')->diagnose(); # ERROR!!

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-41

Calling overridden methods

• When you override a virtual method but want to call the
overridden method, you can specify the class explicitly by
qualifying the method name with the scoping (::) operator:

• This syntax also works with static methods, but the
usefulness of it escapes me...

OOP / Inheritance

sub name {
my $self = shift;
my $name = $self->Person::name(@_);
"Dr. $name";

}

in
Doctor.pm

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-42

The special SUPER class

• If, within a class, you override a method but want to use the
inherited method no matter which of your parent classes it's
defined in, you can use the SUPER class:

• Now it's easier to see what's really going on

OOP / Inheritance

sub name {
my $self = shift;
my $name = $self->SUPER::name(@_);
"Dr. $name";

}
in

Doctor.pm

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-43

ref(REF)

• Sometimes you want to know exactly what class something is.
The ref() operator takes a reference and returns the class:

OOP / Inheritance

sub be_a {
my ($self, $thatclass) = @_;
my $myclass = ref $self;
($myclass eq $thatclass) or

 print "Dammit, Jim, I'm a $myclass, ",
 "not a $thatclass!\n";
}

$bones = new Doctor('McCoy');
$bones->be_a('bricklayer');

in
Doctor.pm

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-44

Tying
OOP

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-45

What is tying?

• Sometime you will define a class which is very much like one
of the built-in datatypes (scalar, array, or hash)... and you'd
like to use normal Perl syntax instead of method calls:

SURPRISE! Perl lets you make any abstract data type
"pretend" to be a scalar, array, or hash... all you have to do is
have it support a few simple methods!

• Associating a variable of a built-in datatype to a user-defined
datatype is called tying.

OOP / Tying

I'd REALLY like to say $mything{'name'} = $value:
$mything->store('name', $value);

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-46

What's going on
OOP / Tying

FETCH
STORE
EXISTS
DELETE

FETCH
STORE
EXISTS
DELETE

Tie a hash %H to a GDBM_File:
tie %H, 'GDBM_File', "test.gdb", &READER;

Get the underlying object:
$obj = tied(%H);

%H (a hash) $obj (a GDBM_File)

$H{X}=1 $obj->STORE(X,1)

tied

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-47

• Older versions of Perl had a special call, dbmopen(), which
tied a hash to a DBM database (like a hash on disk). The call
dbmclose() broke the tie.

• Newer versions of Perl have generalized these calls to tie()
and untie().

• Now, many ways of accessing DB-like files (GDBM, SDBM,
ODBM, NDBM) through tied hashes.

Where is this used?
OOP / Tying

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-48

Let's tie one on!
To allow your class to be tied to a hash, just define the
following methods:

TIEHASH class, arglist Constructor. Return blessed instance.
FETCH this, key Fetch the value at key.
STORE this, key, value Store value under key.
DELETE this, key Delete entry key.
CLEAR this Clear entire hash.
EXISTS this, key Does this key have an entry?
FIRSTKEY this Rewind, and return the first key.
NEXTKEY this, lastkey Return the next key, given the lastkey.
DESTROY this Destructor.

Same basic idea for arrays and scalars.

OOP / Tying

