
Zeegee Software Inc.
http://www.zeegee.com/

A Crash Course in

Perl5
Part 4: Flow control

z e e g e e
s o f t w a r e

http://www.zeegee.com/

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-2

Terms and Conditions
These slides are Copyright 2008 by Zeegee Software Inc. They have been
placed online as a public service, with the following restrictions:

You may download and/or print these slides for your personal use only.
Zeegee Software Inc. retains the sole right to distribute or publish these
slides, or to present these slides in a public forum, whether in full or in part.

Under no circumstances are you authorized to cause this electronic file to be
altered or copied in a manner which alters the text of, obscures the
readability of, or omits entirely either (a) this release notice or (b) the
authorship information.

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-3

Road map
• Basics

– Introduction
– Perl syntax
– Basic data types
– Basic operators

• Patterns
– Introduction
– String matching and modifying
– Pattern variables

• Data structures
– LISTs and arrays
– Context
– Hashes

• Flow control
– Program structures
– Subroutines
– References
– Error handling

• Data
– Input and output
– Binary data
– Special variables

• Object-oriented programming
– Modules
– Objects
– Inheritance
– Tying

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-4

Program structures
Flow control

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-5

for/foreach

• The for loop is as you may have seen:
for ($i = 0; $i < $n; $i++) {

...do stuff with $i...
}

• The foreach loop is intended for iterating through lists:
foreach $elem (@list) {

...do stuff with $elem...
}

Flow control / Program structures

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-6

while/until

• The while loop is mostly as you may have seen:
$i = 0;
while ($i < $n) {

...do stuff with $i: identical to the previous for loop!
}
continue { $i++; }

• The until keyword merely reverses the loop test, so
until EXPR is the same as while not EXPR:

$i = 0;
until ($i >= 10) { ...

Flow control / Program structures

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-7

next/last

• The next statement forces a jump to the next iteration
of a loop (executing any continue block first).

while ($i < 100) {
next if we_dont_like($i);

 ...
} continue { ++$i }

• The last keyword breaks out of the loop:
for ($i = 0; $i < 100; $i++) {

last if $we_should_stop;
...

}

like continue
in C, but better!

Flow control / Program structures

just like break
in C

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-8

if/unless...elsif...else

• No big mystery here, either...
if ($cond1) { ... }
elsif ($cond2) { ... }
else { ... }

• The unless keyword merely reverses the first test:
unless ($cond1) { ... }

Flow control / Program structures

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-9

Function calls

• Two major categories:

– List operators: Take more than one argument (scalar
arguments come before any list argument):

 split /\s+/, $str, 3;
 join '::', @a, $b, @c;

–Named unary operators: Always have exactly one
argument:

 keys %somehash;

• Parentheses optional unless precedence requires them

Flow control / Program structures

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-10

Precedence in function calls

• If you use parens around function args, the simple rule is:

– It looks like a function, so it is a function, and comma-
precedence doesn't matter.

• If you do not use parens around function args:

– Function is treated like a list/unary operator, and comma-
precedence does matter:

print 1+2+3; # prints 6
print(1+2) + 3; # prints 3
print (1+2)+3; # also prints 3!
print +(1+2)+3; # very weird... but prints 6
print ((1+2)+3); # prints 6

Flow control / Program structures

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-11

Subroutines
Flow control

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-12

What is a subroutine?

• A subroutine is Perl's equivalent to what C calls a
“function”. We’ll use the two terms interchangeably.

Define a function to add two numbers:
sub add {

my ($a, $b) = @_; # get args
return $a + $b; # return result

}

Call the function:
$sum = add(40, 2);

Flow control / Subroutines

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-13

my

• Use my to declare lexically-scoped "private variables"
inside of subroutines (or, indeed, inside any blocks, or
even at file scope):

sub stuff {
my ($x, $y) = (10, 20);
print "inside stuff, x = $x\n"; # $x = 10

}

my $x = 5;
print "before stuff, x = $x\n"; # $x = 5
stuff();
print "after stuff, x = $x\n"; # $x = 5

Flow control / Subroutines

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-14

my, my, my...

• Use my to declare multiple variables in one go:

• Careful when you initialize! It is best to declare and init
arrays/hashes separately:

Flow control / Subroutines

my ($scalar, @array, %hash); # declare 3 vars

my ($one, $two, @rest) = (1, 2, 3, 4, 5);

my ($one, $two) = (1, 2);
my (@rest) = (3, 4, 5);

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-15

local

• If you really need to, use local to declare dynamically-
scoped variables inside of subroutines (or any blocks)

• Same syntax as my, but variables so declared will be
usable by any subroutines called, without having to be
passed in

• Think of local as a "pass-by-name" mechanism

Unless you know what you're doing, use my instead of
local: it's faster, safer, and probably what you really want
anyway

Flow control / Subroutines

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-16

my vs. local
sub inner {

print "inner: x=$x, y=$y\n"; # $x = 200, $y = 4
}

sub outer {
local $x = 200;
my $y = 400;
print "outer: x=$x, y=$y\n"; # $x = 200, $y = 400
inner();

}

$x = 2;
$y = 4;
outer();
print "end: x=$x, y=$y\n"; # $x = 2, $y = 4

Flow control / Subroutines

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-17

Calling subroutines

• All subroutines take a LIST of scalars as an argument.

• All subroutines return a LIST of values... even when a
scalar is returned it’s really returned as a one-elem list.

• A subroutine may be called in several ways...

add(60, 4); Pass 2 arguments
add 60, 4; Parens optional if predeclared/imported
add(); Passes no args to subroutine
&add; Passes current value of @_ to subroutine!
add(@x, @y); Remember list interpolation! This passes

in all elements of @x and @y!

Flow control / Subroutines

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-18

Getting the arguments

Arguments are passed into subroutines via a special array
called @_ ... that is, as ($_[0], $_[1], ...)

Flow control / Subroutines

You can use them as-is...

You can grab them via list
assignment...

sub add {
return $_[0] + $_[1];

}

sub add {
my ($a, $b) = @_;
return $a + $b;

}

sub add {
my $a = shift @_;
my $b = shift;
return $a + $b;

}

...or you can use shift
(which works on @_ by
default)...

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-19

Beware the no-argument call!
Flow control / Subroutines

• If your subroutine doesn't use @_ at all, you can safely use
the "no-argument form" when calling it... in which case, the
current value of @_ in the caller gets passed in:

However, if your subroutine is extended in the future to
examine its argument list for optional arguments, existing
code may break!

• Get in the habit of using () for safety:

&dostuff; # passes in whatever @_ happens to be now

dostuff(); # passes in zero arguments, explicitly

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-20

Beware call-by-reference!
Flow control / Subroutines

Altering the elements of the @_ array will alter the
caller’s arguments!

• Get in the habit of using my() to grab the values... then
you’re doing the much-safer call-by-value.

sub swap {
my $tmp;
$tmp = $_[0]; $_[0] = $_[1]; $_[1] = $tmp;

}

$x = 40;
$y = 2;
swap($x, $y); # now $x = 2, $y = 40!

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-21

“Named” parameters

• Since @_ can be of the form (key1, val1, key2, val2, ...), you
can create subroutines that pass “named” args!

sub mailheader {
my %params = @_;
my $from = $params{From};
my $to = $params{To};
my $subj = $params{Subject} || 'None';

print "From: $from\n" if $from;
print "To: $to\n"; if $to;
print "Subject: $subj\n\n";

}

mailheader(From => 'me@myhost.com',
 To => 'you@yourhost.com'
 Subject => "Hi!");

Flow control / Subroutines

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-22

Returning values

• A subroutine returns the value(s) of its last statement:

• You can explicitly return from a subroutine if you like
(usually for error handling):

Flow control / Subroutines

sub answer {
40 + 2;

}

sub add {
return undef unless @_; # no args!
$_[0] + $_[1];

}

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-23

References
Flow control

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-24

What is a reference?

• References in Perl are like pointers in C. They are
scalars which "point" to another Perl object...

Array Scalar Object

Hash Subroutine

• Used for...

–Nesting data structures (e.g., arrays of hashes of
arrays...)

– Bypassing call-by-value

Flow control / References

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-25

Referencing and dereferencing

• Perl's referencing operator is \ ... it's like & in C:

$arrayref = \@array;
$hashref = \%hash;
$scalarref = \$scalar;
$subrref = \&subr;

• Perl's dereferencing operators are typed:

@array equals @$arrayref;
%hash equals %$hashref;
$scalar equals $$scalarref;
&subr equals &$subrref;

Flow control / References

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-26

Dereferencing
1. Anywhere you'd put an identifier as part of a var or

function name, you can use a scalar that holds a reference:

$first = $array[0];
$first = $$arrayref[0];

2. Anywhere you'd put an identifier as part of a var or
function name, you can use a BLOCK that evaluates to a
reference:

$first = ${ getArrayRef() }[0];

3. When accessing elems of arrays/hash refs, you can use -> :

$first = $arrayref->[0];

Flow control / References

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-27

Using references to arrays
• In each of these groups, compare the first form (no

references) to the others (with references):

@sorted = sort @array;
 @sorted = sort @$arrayref;

$nelems = $#array + 1;
$nelems = $#{$arrayref} + 1;

$first = $array[0];
$first = $$arrayref[0];
$first = ${$arrayref}[0];
$first = $arrayref->[0];

Flow control / References

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-28

Creating “anonymous” arrays
• If you just want a reference to an “anonymous” array,

you can create one via lists bordered with [and] ...

$arrayref = ['A', 'B', 'C'];
$capitalA = $arrayref->[0];

• Since reference are scalars, we can embed them in lists...

$arrayref = [[A, B, C], D, [E, F]];
$capitalE = $arrayref->[2]->[0];

That’s how we nest data structures and make multi-
dimensional arrays!

Flow control / References

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-29

Using references to hashes

• In each of these groups, compare the first form (no
references) to the others (with references):

@keys = keys %hash;
 @keys = keys %$hashref;

$name = $hash{Name};
$name = $$hashref{Name};
$name = ${$hashref}{Name};
$name = ${ gethashref() }{Name};
$name = $hashref->{Name};

Flow control / References

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-30

Creating “anonymous” hashes

• If you just want a reference to an “anonymous” hash,
you can create one via lists bordered with { and } ...

 $worf = {
 Name => 'Worf',
 Species => 'Klingon',
 Hobbies => ['Model ship building',
 'Meditating',
 'Beating people up']
 };

$favehobby = $worf->{Hobbies}->[0];

Flow control / References

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-31

Folding up -> chains

• You can write this:

$crew is a ref to an array of hashes of arrays...
$value = $crew->[$i]->{Stations}->[$j];

like this:
$value = $crew->[$i]{Stations}[$j];

Any -> between a right and left brace (curly or square)
can be eliminated... Perl knows what's going on!

Flow control / References

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-32

Creating “anonymous” subs

• If you just want a reference to an “anonymous”
subroutine, you can create one like this...

 $subref = sub { ordinary subroutine code here };

Notice the ; at the end... we need it because the sub{...} is
really just the RHS of an assignment statement

• Use it with & like this:
 $result = &$subref(1, 2, 3);

• Anonymous subs act as closures with respect to my vars

Flow control / References

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-33

Closures

• Closures allow you to "freeze" my variables inside
anonymous subroutines:

Return a subroutine which will add $n to its 1st argument:
sub make_adder {
 my ($n) = @_;

 return sub { $_[0] + $n };
}

Create and use a subroutine which adds 40 to its 1st argument:
my $add40 = make_adder(40);
print &$add40(2), "\n"; # prints 42

Flow control / References

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-34

Error handling
Flow control

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-35

Error-handling wrappers

• It's standard in Perl for functions to return a true value on
success, and a false value (0, undef, the empty list) on error

• Get in the habit of checking errors, like this:
Non-fatal error, silent: return false from this function:
open(LOG, $logfile)

or return undef;

Non-fatal error, noisy: complain, and return false from this function:
open(LOG, $logfile)

or return error("open $logfile: $!");

Fatal error: exit program:
open(LOG, $logfile)

or die "open $logfile: $!";

Flow control / Error handling

error() is a
function that you
provide: it should

return false

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-36

$! ($OS_ERROR)

• In a numeric context, yields current value of errno. In
a string context, yields current error string:

open(LOG, "personal.log") or
die "errno ", int($!), ": $!";

• Don't depend on it being defined unless a condition
arises which indicates a system error.

• Mnemonic: what just went bang?

Flow control / Error handling

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-37

$? ($CHILD_ERROR)

• The status returned by the last pipe close, backtick (``)
command, or system() operator.

• Actual exit value of process is ($? >> 8).

• Mnemonic: similar to sh/ksh

Flow control / Error handling

exit() value
of process

signal that
terminated process

high 8 bits low 8 bits

$?

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-38

warn(LIST) / carp(LIST)

• The warn function prints LIST to STDERR as a warning
message. It is the standard way to issue a warning.

warn "She canna take the strain, Jim!"
if ($warp > 9);

• If you "use Carp", you can use the alternative, carp:
carp "I canna change the laws of physics, Jim!"

if ($restart && ($intermix_temp < 1200));

• You can replace warn's output handler with your own:
$SIG{__WARN__} = sub {

print STDERR "AHOY! ", $_[0];
};

Flow control / Error handling

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-39

die(LIST) / croak(LIST) / confess(LIST)

• The die function prints LIST to STDERR (like warn), and exits.
 It is the standard way to deal with a fatal error/exception.

 die "warp core breach: field collapsed"
if ($containment_field_strength < 0.15);

• If you "use Carp", you can also use croak or confess:
croak "auto-destruct triggered";

if ($autodestruct_countdown == 0);

• You can hook into die, and do stuff just before a death:
$SIG{__DIE__} = sub {

abandon_ship("EMERGENCY! $_[0]");
};

Flow control / Error handling

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-40

Catching fatal errors

• Sometimes, you will have to call a function that can cause the
program to die...

– It might call die() in a panic response to some errors
– It might contain a patch of bad code that coredumps

...but you want to prevent it from actually killing the program.
 Wrap the call in an eval, and check $@ to see if a fatal
error was caught:

Flow control / Error handling

eval { risky_business() };
$@ and warn "fatal error caught: $@";

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-41

$@ ($EVAL_ERROR)

• The Perl syntax/execution error from the last eval()
command.

• If a null string, indicates that last eval parsed and executed
okay (although non-fatal errors may have occurred!).

• If not null, it contains the fatal error message:

 eval '$x = '; warn $@ if $@;

• Mnemonic: where was the syntax/fatal error "at"?

Flow control / Error handling

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-42

Detecting possible problems

• The recommended way to invoke Perl in your scripts is:

Flow control / Error handling

#!/usr/bin/perl -Tw
use strict;

-w Warns about identifiers mentioned only once, scalars that
are used before being set, redefined subroutines, attempts to
use undefined filehandles, numeric use of things that don't
look like numbers... etc... etc...

-T Turns on "taint checking". Perl will detect if you attempt to
perform certain unsafe operations, like running a system
command (e.g., "rm") where part of the command line came
from outside this script (e.g., from user input).

