
Zeegee Software Inc.
http://www.zeegee.com/

A Crash Course in

Perl5
Part 3: Data structures

z e e g e e
s o f t w a r e

http://www.zeegee.com/

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-2

Terms and Conditions
These slides are Copyright 2008 by Zeegee Software Inc. They have been
placed online as a public service, with the following restrictions:

You may download and/or print these slides for your personal use only.
Zeegee Software Inc. retains the sole right to distribute or publish these
slides, or to present these slides in a public forum, whether in full or in part.

Under no circumstances are you authorized to cause this electronic file to be
altered or copied in a manner which alters the text of, obscures the
readability of, or omits entirely either (a) this release notice or (b) the
authorship information.

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-3

Road map
• Basics

– Introduction
– Perl syntax
– Basic data types
– Basic operators

• Patterns
– Introduction
– String matching and modifying
– Pattern variables

• Data structures
– LISTs and arrays
– Context
– Hashes

• Flow control
– Program structures
– Subroutines
– References
– Error handling

• Data
– Input and output
– Binary data
– Special variables

• Object-oriented programming
– Modules
– Objects
– Inheritance
– Tying

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-4

LISTs and arrays
Data structures

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-5

LISTs

• LISTs are comma-separated sequences of scalars
(enclosed in parentheses when precedence requires)

chmod 0755, 'ls', 'dir'; # a list

chmod(0755, 'ls', 'dir'); # same list

• Not data types per se, but used in...

– Subroutine/method calls, to pass arguments:
print $x, " is greater than ", $y;

– Array/hash initialization:
@exts = ('gif', 'tif', 'ps', 'xbm');

Data structures / LISTs and arrays

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-6

Arrays

• Arrays hold sequences of 0 or more scalars

• Indexing is done with square brackets ([])

• Indexing starts at zero (0)

• Array variables are signified by a @ before the variable
name: @names

• Array elements are scalars, so put a $ before the variable
name when you refer to them: $names[0]

• Array slices are arrays, so put a @ before the variable
name when you refer to them: @names[0..2]

Data structures / LISTs and arrays

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-7

The value of a LIST

• When assigning a LIST to a scalar, the value of the list
literal is the value of the final element:

• When assigning a LIST to an array, the entire list is
assigned to the array:

$last = ('Mercury', 'Venus', 'Mars');
print $last, "\n";

Mars

@all = ('Mercury', 'Venus', 'Mars');
print $all[2], "\n";

Mars

Data structures / LISTs and arrays

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-8

Wordlists

• If you want to initialize from a list of strings which are all
single-quoted with no whitespace, you can use the
special qw{} (quote wordlist) operator:

These are identical:
@all = ('Mercury', 'Venus', 'Mars');
@all = qw(Mercury Venus Mars);

• You can use the same kinds of delimiters as with q{},
qq{}, etc.

Data structures / LISTs and arrays

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-9

Interpolation in LISTs

• When a LIST is evaluated, each element of the LIST is
evaluated (in a list context) and the resulting list value is
interpolated (spliced) into the LIST:

• Interpolating an empty list/array has no effect.

@a2c = ('A', 'B', 'C');
$d = 'D';
@e2z = ('E'..'W', 'X'..'Z');

This sets @all to the array ('A'..'Z'):
@all = (@a2c, $d, @e2z);

Data structures / LISTs and arrays

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-10

Assigning to LISTs

• LISTs may be assigned to only if each element of the list
is legal to assign to (i.e., is an lvalue):

($a, $b, $c) = (0, 1, 2);
($a, $b, $c) = @somearray;

• The final element may be an array or a hash:
($a, $b, @rest) = (0, 1, 2, 3, 4, 5);
($a, $b, %rest) = (0, 1, 2, 3, 4, 5);

• Elements which are not assigned get the undef value:
($a, $b, $c) = (0, 1); # c is now undefined

Data structures / LISTs and arrays

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-11

Initializing arrays

• Arrays may be initialized by a LIST of 0 or more
elements, enclosed in parentheses:

• Or, from slices of other arrays (notice the @s!):

@empty = ();# empty array
@names = (# array of 6 elements:

"Kirk", "Bones", "Spock",
"Uhura", "Rand", "Chapel"

);

@men = @names[0,1,2];
@women = @names[3..5];
@medics = @names[1,5];

Data structures / LISTs and arrays

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-12

The length of an array

• To get the number of elements, evaluate the array in a
scalar context. You can do this by assigning to a scalar
variable, or by using the function scalar():

• To get the index of the last element, use $# in front of
the array variable name... without the @_:

@names = ("Uhura", "Rand", "Chapel");
$numnames = scalar(@names); # set to 3

@names = ("Uhura", "Rand", "Chapel");
$lasti = $#names; # set to 2

Data structures / LISTs and arrays

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-13

Changing an array's length
• Surprise! The $#arrayname variable may be assigned to,

to extend or shorten the array:

• If extending an array, all previously-unassigned slots are
set to the undefined value

@names = ("Uhura", "Rand", "Chapel");
$all = join('/', @names); # Uhura/Rand/Chapel

$#names = 4;
$all = join('/', @names); # Uhura/Rand/Chapel//

$#names = 1;
$all = join('/', @names); # Uhura/Rand

Data structures / LISTs and arrays

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-14

Fun with arrays
@names = (); # not needed, but nice
@suffixes = ('', '-A', '-B', '-C', '-D');

print scalar(@names), "\n"; # prints 0
for ($i = 0; $i < scalar(@suffixes); $i++) {

$names[$i] = "NCC1701$i";
}
print scalar(@names), "\n"; # prints 5

print "$names[4]\n"; # prints NCC1701-D
$names[4] = "Enterprise-$suffixes[4]";
print "$names[4]\n"; # prints Enterprise-D

Data structures / LISTs and arrays

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-15

split(PATTERN, EXPR, LIMIT)

• Splits a string into an array of strings, via a given pattern:

• Can set a limit on the number of elements to be returned:

$fullname = 'Captain James T. Kirk';
@parts = split(/\s+/, $fullname);
print "$parts[0] $parts[3]";

Captain Kirk

($rank, $name) = split(/\s+/, $fullname, 2);
print "$rank: <$name>";

Captain: <James T. Kirk>

Data structures / LISTs and arrays / Functions

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-16

join(EXPR, LIST)

• Joins a list (or array) of strings into a single string:

• Remember, list interpolation is your friend!

@parts = ('enterprise', 'starfleet', 'ufp');
$hostname = join('.', @parts);
print "picard\@$hostname\n";

picard@enterprise.starfleet.ufp

@parts = ('enterprise', 'starfleet', 'ufp');
$hostname = join('.', 'mail', 'bridge', @parts);
print "picard\@$hostname\n";

picard@mail.bridge.enterprise.starfleet.ufp

Data structures / LISTs and arrays / Functions

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-17

push(ARRAY, LIST) / pop(ARRAY)

• push() adds one or more elements to the right side (the
end) of an array:

• pop() removes one element from the right side (the end)
of an array, and returns it (or undef if array is empty):

@digits = (1..7);
push(@digits, 8, 9, 10); # @digits is now (1..10)

@digits = (1..10);
$last = pop(@digits); # @digits is now (1..9)

 # $last is now '10'

Data structures / LISTs and arrays / Functions

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-18

unshift(ARRAY, LIST) / shift(ARRAY)

• unshift() adds one or more elements to the left side
(beginning) of an array:

• shift() removes one element from the left side (beginning)
of an array, and returns it (or undef if array is empty):

@digits = (4..10);
unshift(@digits, 1, 2, 3); # @digits is now (1..10)

@digits = (1..10);
$first = shift(@digits); # @digits is now (2..10)

 # $first is now '1'

Data structures / LISTs and arrays / Functions

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-19

Shifting vs. push/pop
Data structures / LISTs and arrays / Functions

1

1 10

unshift

2 3 8 9 10

1 2 3 4 5 6 7 8 9 10

shift

push

pop

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-20

sort(LIST)

• sort() takes a LIST and sorts it in ascending string-
comparison (cmp) order, returning the sorted list value:

The original list remains unsorted!

print join('-', @raw); # prints Z-B-A-X-C-Y

@raw = ('Z', 'B', 'A', 'X', 'C', 'Y');
@sorted = sort @raw;
print join('-', @sorted); # prints A-B-C-X-Y-Z

Data structures / LISTs and arrays / Functions

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-21

Changing sort()'s order

• You can provide a block to change the sorted order, using
special variables $a and $b:

• You can also supply a subroutine name:

@raw = (21, 3, 567, 1, 10, 100, 1000);
@ascending = sort { $a <=> $b } @raw;

@raw = ('Z', 'B', 'A', 'X', 'C', 'Y');
@ascending = sort { $a cmp $b } @raw;
@descending = sort { $b cmp $a } @raw;

sub backwards { $b cmp $a }
@descending = sort backwards @raw;

Data structures / LISTs and arrays / Functions

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-22

reverse(LIST)

• In a list context, returns a list value consisting of the
elements of LIST in reversed order:

• In a scalar context, reverses the bytes of the first element
of LIST, and returns that:

@fwd = ('A', 'B', 'C');
@rev = reverse @fwd; # @rev is now 'C', 'B', 'A'

$rev = reverse 'Picard';
print $rev;

draciP

Data structures / LISTs and arrays / Functions

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-23

Context
Data structures

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-24

List context vs. scalar context

• The interpretation of operations/values sometimes
depends on the context around the operation/value

• Two major contexts: scalar and list

– Some operations return list values in list context, and
scalar values in scalar context; or, in other words...

– Perl overloads some operations based on whether the
expected return value is singular or plural

• An operator provides either a scalar or list context to
each of its arguments: this affects what gets sent in!

Data structures / Context

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-25

Examples of context

• Context determines what an array's "value" is... for
example, when assigning it to something else:

• Context determines what the <> input operator does:

$size = @names; # value in scalar context is length
@copy = @names; # value in list context is the array

Causes a single line to be read from STDIN:
$one = <STDIN>;

Causes all lines to be read from STDIN!
@all = <STDIN>;

Data structures / Context

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-26

Context and arguments

• Assignment op uses left side to set context of right side:

A function provides either a scalar or list context to
each of its args: read the documentation!

$size = @names; # assign to scalar = scalar context
@copy = @names; # assign to array = list context
@copy[2..4] = @names; # assign to array slice = list context
($a, $b) = @names; # assign to list = list context

print LIST;
Beware! The argument to print is a LIST, so all the elements
of the argument list are evaluated in a LIST context:

print "All elems: ", @elems, "\n";

Data structures / Context

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-27

Context and arguments (cont'd)

Usage: print $expr, @x, $len;

Declaration: print LIST;

Meaning: This function takes a LIST, so each of its arguments is
evaluated in a LIST context. This means that the elements
of @x will be interpolated into the argument list between
$expr and $len.

Usage: substr $expr, @x, $len;

Declaration: substr EXPR, OFFSET, LENGTH;

Meaning: This function takes three scalars, so each of its arguments
is evaluated in a SCALAR context. This means that the
number of elements of @x is used as the second argument.

Data structures / Context

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-28

Context and return values

There is no general rule for converting a list
value to a scalar, so read the documentation if you're
going to call a list-oriented operator in a scalar context!

• For functions that can be called in both contexts, failure
is usually indicated by returning...

undef ...in the scalar context
() (the null list) ...in the list context

$x = sort @somearray; # what is $x?

Data structures / Context

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-29

What's my context?

• User subroutines can ask about their context and act
accordingly, using wantarray():

• Use it to return an appropriate error value:

• Generally, though, you don't need to worry about it.

sub alphabits {
 return (wantarray ? ('A','B','C') : 'XYZ');
}
@arr = alphabits(); # sets @arr to ('A',
'B', 'C')
$str = alphabits(); # sets $str to 'XYZ'

Data structures / Context

return (wantarray ? () : undef);

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-30

Forcing scalar context

• You can force scalar context via the scalar() operator:

@counts = (scalar @a, scalar @b);

• If the scalar you want is an integer anyway, you can also
use the int() operator... it's considered sloppy and
inefficient, but it's nicer to type and it drives the point
home:

print "Count = ", int(@a), "!\n";

Data structures / Context

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-31

Hashes
Data structures

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-32

What are hashes?

• Hashes (or associative arrays) are much like arrays,
except that instead of storing/retrieving information by a
numeric index (e.g., 0, 1, 2), you store/retrieve
information by a text string, called the key.

• A quick comparison of arrays and hashes...

$array[12] = 'Kirk';
$capn = $array[12];

$hash{'Captain'} = 'Kirk';
$capn = $hash{'Captain'};

@array is an array

%hash is a hash

Data structures / Hashes

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-33

Hashes

• Hashes consist of zero or more key=value pairs, where
the keys and values are all scalars. You store and retrieve
a given value by its key.

• Only one value per key.

• Indexing is done with curly brackets ({})

• Hash variables are signified by a % before the variable
name: %names

• Hash values are scalars, so put a $ before the variable
name when you refer to them: $names{'Captain'}

Data structures / Hashes

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-34

Initializing hashes

• Like arrays, hashes may be initiallized by a LIST of 0 or
more elements, enclosed in parentheses:

• The elements are regarded as

(key1, val1, key2, val2, ..., keyN, valN).

• There must be an even number of elements!

%names = (
'Captain', 'Kirk',
'Science Officer', 'Spock',
'Medical Officer', 'Bones'

);

Data structures / Hashes

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-35

The => operator

• Perl provides the => list operator. It is (almost)
syntactically identical to the comma (,) but is more
readable when initializing hashes:

• The list elements are now more obviously read as...

(key1 => val1, key2 => val2, ..., keyN => valN).

%names = (
'Captain' => 'Kirk',
'Science Officer' => 'Spock',
'Medical Officer' => 'Bones'

);

Data structures / Hashes

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-36

Barewords as hash keys

• The use of => as a hash initializer is known to Perl...
you can safely use barewords on the left hand side (if
they are not all-lowercase):

• Ditto for hash keys inside curly braces:

%names = (
Captain => 'Kirk',
ScienceOfficer => 'Spock',
MedicalOfficer => 'Bones'

);

Data structures / Hashes

$capn = $names{Captain};

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-37

keys(HASH)

• Takes a hash and returns all the keys, as an array:

• Keys are returned in an apparently random order, but it
is the same order as in values() and each()

• In a scalar context, keys() returns the number of keys

%crew = ('Captain' => 'Kirk',
 'Helm' => 'Sulu',
 'Chief Nurse' => 'Chapel');
@stations = keys %crew;
print join('/', @stations);

Helm/Chief Nurse/Captain

Data structures / Hashes

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-38

More fun with keys()

• Can be used in conjunction with sort():

Print out all environment vars, sorted:
foreach $key (sort keys %ENV) {

print "$key = $ENV{$key}\n";
}

HOME = /home/eryq
PATH = /bin:/usr/bin:/usr/local/bin
SHELL = tcsh
USER = eryq

Data structures / Hashes

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-39

values(HASH)

• Takes a hash and returns all the values, as an array:

• Values are returned in an apparently random order, but it
is the same order as in keys() and each()

• In a scalar context, values() returns the number of values

%crew = ('Captain' => 'Kirk',
 'Helm' => 'Sulu',
 'Chief Nurse' => 'Chapel');
@names = values %crew;
print join('/', @names);

Sulu/Chapel/Kirk

Data structures / Hashes

11/15/08Copyright © 1996, 2000 Zeegee Software Inc. A Crash Course in Perl5 1-40

each(HASH)

• Takes a hash and returns a 2-element array of the next
key=>value pair, for iterating over the hash:

• When no more pairs remain, returns the empty array...
which when assigned as shown has a FALSE value.

Don't modify the hash while iterating over it!

Print out all environment variables:
while (($key, $value) = each %ENV) {

print "$key = $value\n";
}

Data structures / Hashes

