
Copyright © 2001,2010 Zeegee Software Inc.1A Crash Course in Java

A Crash Course in
Java:

String Processing
and Unicode

z e e g e e
s o f t w a r e

Copyright © 2001,2010 Zeegee Software Inc.2A Crash Course in Java

Unicode
• Sooner or later, you'll

need to manipulate
non-ASCII characters.

• Java makes this easy
and automatic.

• Java is heavily based
on the international
Unicode standard for
encoding characters.

• A character is not a
byte, or even a pair of
bytes!

Copyright © 2001,2010 Zeegee Software Inc.3A Crash Course in Java

Unicode:

Character sets
• A character set is just a set of characters, each

having a unique “id number” within that set.

• Here are a few common character sets:
– US-ASCII has ~128 characters in it, and is

principally English letters (upper- and lowercase),
numbers, punctuation, and a single space.

– Latin-1 (ISO-8859-1) has ~256 characters: all of
ASCII, plus letters used in Western-European
languages (like á and ç).

– Latin-7 (ISO-8859-7) has ~256 characters: all of
ASCII, plus Greek letters (like π, α, and Ω).

Copyright © 2001,2010 Zeegee Software Inc.4A Crash Course in Java

Unicode: Character sets:

US-ASCII
• Contains 128 characters, or “code points”:

– Graphical characters (0x20-0x7E): English letters,
numbers, punctuation, and a single space.

– Control characters (0x00-0x1F, 0x7F): tab, carriage
return, linefeed, “bell”, delete, and many others.

• Every character is meant to be stored in 1 byte.

• Common characters:
• 0x20 single space
• 0x41 capital 'A'
• 0x61 lowercase 'a'
• 0x7E tilde (~)

• 0x09 tab
• 0x0A linefeed
• 0x0D carriage return

Copyright © 2001,2010 Zeegee Software Inc.5A Crash Course in Java

Unicode: Character sets:

Latin-1 (ISO-8859-1)
• Contains 256 characters (0x00-0xFF), meant to

be stored in a single byte.

• All of ASCII, plus letters used in Western-
European languages (French, Spanish, etc.).

• Common characters:
– 0x41 uppercase 'A' (because Latin-1 contains ASCII)

– 0x61 lowercase 'a' (ditto)

– 0xA9 copyright symbol: ©

– 0xC1 uppercase 'A' with acute accent: Á

– 0xE1 lowercase 'a' with acute accent: á

– 0xE7 lowercase 'c' with cedilla: ç

Copyright © 2001,2010 Zeegee Software Inc.6A Crash Course in Java

Unicode: Character sets:

Latin-7 (ISO-8859-7)
• Contains 256 characters (0x00-0xFF), meant to

be stored in a single byte.

• All of ASCII, plus Greek letters.

• Common characters:
– 0x41 uppercase 'A' (because Latin-7 contains ASCII)

– 0x61 lowercase 'a' (ditto)

– 0xA9 copyright symbol: ©

– 0xC1 uppercase Greek 'Alpha': Α

– 0xE1 lowercase Greek 'Alpha': α

– 0xE7 lowercase Greek 'eta': η

Copyright © 2001,2010 Zeegee Software Inc.7A Crash Course in Java

Unicode:

Why these are not enough
• How to represent characters in languages with

more than 256 characters (Chinese, Japanese,
Korean)?

• Sometimes we need to intermix characters from
different sets in the same document:

Ελληνικά • Français • •日本語 Русский

• This is not a "font" issue! A font says how to
display information; a character is information.

Copyright © 2001,2010 Zeegee Software Inc.8A Crash Course in Java

Unicode:

Enter Unicode
• Unicode is a very large character set:

95,000 characters and growing!

• Nearly all modern and historical characters exist
somewhere in Unicode.

• Also includes smileys, math symbols, Tolkien's
Elvish characters, and Klingon!

Copyright © 2001,2010 Zeegee Software Inc.9A Crash Course in Java

Unicode:

Unicode character codes
• Unicode does not dictate how a given character is

represented on disk or in memory. A character is
just a number. Think of it as a unique ID.

• We indicate a Unicode character by “U+”
followed by the ID as a hex number:

• First 256 characters are identical to Latin-1!

U+0041 English capital letter “A”
U+00E7 Lowercase C-with-cedilla: ç
U+20AC Euro symbol: €
U+263A Smiley: ☺
U+1D160 Eighth note: ♪

Copyright © 2001,2010 Zeegee Software Inc.10A Crash Course in Java

Unicode:

Unicode escape sequences
• C++/Perl let you specify characters inside double-

quoted strings via octal (\012) and hex (\xAB)

• Java supports these, but also lets you use Unicode
(\uABCD) to represent U+ABCD.

• Western bias makes some conversion easy:
\u0000-\u007F Same as \x00-\x7F in ASCII
\u0080-\u00FF Same as \x80-\xFF in Latin-1

Copyright © 2001,2010 Zeegee Software Inc.11A Crash Course in Java

Unicode:

Using Unicode in Java
• You can use it in string constants, of course:

// Print out "François":
System.out.println("Fran\u00E7ois");

• Character constants work too:

// Assign 'ç' (that char is 2 bytes!):
char cCedilla = '\u00E7';

• And so do identifiers!

// Create a French waiter:
String gar\u00E7on = "Fran\u00E7ois";

Copyright © 2001,2010 Zeegee Software Inc.12A Crash Course in Java

Unicode:

A small gotcha
• Unicode is unified: attempt has been made to

have each character appear only once. It's not
just an amalgam of existing character sets...

...but beware!
Unicode U+0041 is a Roman capital “A”.
Unicode U+0391 is a Greek capital “Alpha”.
Unicode U+0410 is a Cyrillic capital “A”
They look identical!

Identical-looking Unicode characters have been
used in domain spoofing attacks (the “IDN
homograph attack”). Think about that the next
time you click on a link to “Amazon.com”...

A
АΑ
Actual glyphs in

Lucida Sans Unicode

Copyright © 2001,2010 Zeegee Software Inc.13A Crash Course in Java

Unicode:

Transformation Formats
• Remember, a character is just a number, but

computers don't store “numbers”: they store bits
and bytes.

• A scheme for representing a sequence of Unicode
characters as a sequence of bits is called a
transformation format.

• It's just a way of “encoding” the character
information, for when you need to...

– Represent the character in memory

– Store the character in a file

– Write the character through a network pipe

Copyright © 2001,2010 Zeegee Software Inc.14A Crash Course in Java

Unicode:

The UTF-16 Encoding
• A common Unicode representation inside a

running software application.

• Characters U+0000 to U+FFFF are stored as a 2
byte sequence which contains the code number:

– U+00E7 is the 2-byte sequence [00][E7].

– “Cat” is 6 bytes: [00][43][00][41][00][74].

• Characters U+10000 and beyond are represented
by special two-character (4 byte) combinations.

• Simple and straightforward for nearly all common
characters.

Copyright © 2001,2010 Zeegee Software Inc.15A Crash Course in Java

Unicode:

Problems with UTF-16
• ASCII / ISO-8859 text now takes twice the space,

since each character needs 2 bytes instead of 1.

• ASCII data can't be processed by common tools
when stored as Unicode -- especially due to
“zero” bytes (0x00), which in many applications
signal “end of string”!

• Fortunately, other formats exist...

Copyright © 2001,2010 Zeegee Software Inc.16A Crash Course in Java

Unicode:

The UTF-8 Encoding
• Most popular Unicode representation.

Based on # of data bits in Unicode character:

• Many nice features:
– 7-bit ASCII already is UTF-8, and all 8-bit UTF-8 bytes

are always non-ASCII data.

– Already "compressed" for ASCII/ISO-8859.

– Unambiguous bit patterns allow synch/repair.

– Sort order is preserved.

Data bits UTF-8 representation
0 - 7 0aaaaaaa

 8 - 11 110bbbaa 10aaaaaa
12 - 16 1110bbbb 10bbbbaa 10aaaaaa
17 - 21 11110ccc 10ccbbbb 10bbbbaa 10aaaaaa

Copyright © 2001,2010 Zeegee Software Inc.17A Crash Course in Java

Unicode:

Local character encodings
• UTF-16 is convenient for representing characters

internally, but most existing file formats are not
16-bit-Unicode based!

• When Java's I/O layer writes characters to an
output stream, it automatically converts them
from the internal 16-bit Unicode encoding to
your local character encoding.

• Vice-versa when reading characters.

• Characters which can't be converted
to the local encoding may be distorted
or lost.

Probably
ASCII or
Latin-1
for you

Copyright © 2001,2010 Zeegee Software Inc.18A Crash Course in Java

Unicode:

Automatic conversion
• Compile and run the following in America:

• If your local charset is ISO-8859-1,
you'll see these 8 bytes: Fran[E7]ois
If it's UTF-8, you'll see 9 bytes: Fran[C2][A7]ois

public class Hello {
public static void main(String[] args) {

System.out.println("Fran\u00E7ois");
}

} % java Hello > Hello.out
% less Hello.out

Fran<E7>ois
% ls -l Hello.out

-rw-r--r-- 8 Hello.out

Copyright © 2001,2010 Zeegee Software Inc.19A Crash Course in Java

Unicode:

Character corruption
• Characters must be turned into a sequence of bits

if you want to store them in memory, save them
on disk, or transmit them through the Internet.

• But what if the software reading those bits
mistakenly assumes a different character encoding
than the software writing those bits?

– Reading UTF-8 bytes as if they were US-ASCII

– Reading ISO-8859-1 bytes as if they were UTF-8

• The result is character corruption...

Copyright © 2001,2010 Zeegee Software Inc.20A Crash Course in Java

Unicode:

Example of UTF-8 corruption

0 0 E 7 U+00E7 as hex digits
0000 0000 1110 0111 U+00E7 as bits
bbbb bbbb aaaa aaaa Unicode byte name for each bit

110bbbaa 10aaaaaa UTF-8 encoding for 8-11 data bits
11000011 10100111 UTF-8 encoding for U+00E7
1100 0011 1010 0111 U+00E7 as UTF-8 bits
C 3 A 7 U+00E7 as UTF-8 hex digits

Suppose you have a file in UTF-8,
containing a c-cedilla (U+00E7)...

Here is what you'd see if you tried to
display bytes [C3][A7] on a terminal
which assumes that data written to it
is ISO-8859-1 instead of UTF-8.

ç

Ã §

Copyright © 2001,2010 Zeegee Software Inc.21A Crash Course in Java

Unicode:

Corruption is everywhere
• In a web application that takes form data and

stores it in a database table, the same character
may be encoded, transmitted, parsed, and re-
encoded many times until it lands in the table!

• Some symptoms:
– You see garbled text where you expected a non-

ASCII character (like “FranÃ§ois”). That's just a
misinterpretation of the bytes.

– You see text with missing characters, or characters
replaced with “?” (like “Franois” or “Fran?ois”): that's
data loss, usually caused by stuffing Unicode into a
more limited byte representation like US-ASCII.

Copyright © 2001,2010 Zeegee Software Inc.22A Crash Course in Java

Unicode:

Project: Unicode
Write a Java program which
outputs some text in various
languages. Be sure to
include a Roman "A" and a
Greek capital Alpha
(\u0391), as well as some
Cyrillic or Hebrew
characters. Capture the
output to a file, and examine
it with a word processor
and/or a binary dump.

• How did the Alpha
translate? Same as "A", or
different?

• What about the
Cyrillic/Hebrew letters?

• Some UNIX shells have
environment variables
which let you change the
locale. Try doing this, and
re-running your tests.
Any change?

23A Crash Course in Java Copyright © 2001 ZeeGee Software Inc.

Strings
• Java has a number of

utilities for dealing with
[Unicode] strings.

Copyright © 2001,2010 Zeegee Software Inc.24A Crash Course in Java

Strings:

java.lang.String
• Not a primitive type, but it is a special class:

– String literals are automatically converted to
instances of String.

– Java uses + operator for concatenation.

– + will promote to String if either operand is a String
(e.g., "Super" + 8 = "Super8").

– Special toString() method of Object for coercing
objects to strings when type-promoted.

• Not like C strings!
– No NUL-terminator.

– Bounds-checked (RuntimeException thrown).

Copyright © 2001,2010 Zeegee Software Inc.25A Crash Course in Java

Strings:

String access
charAt(i) Get char at given index (0-based).

compareTo(s) Is this string <, =, > the other?

equals(s) Does this string have the same
equalsIgnoreCase(s) characters as the other string.

indexOf(sub) 0-based pos'n of leftmost/rightmost
lastIndexOf(sub) occurrence of given substring/char.

length() Get number of characters.

startsWith(s) Does this string start/end with given
endsWith(s) string?

substring(from, thru) Return new substring of this.

Copyright © 2001,2010 Zeegee Software Inc.26A Crash Course in Java

Strings:

String "manipulation"
replace(oldc, newc) Return new string with char

replaced.

toUpperCase() Return new, up/down-cased string.
toLowerCase()

trim() Return new string with leading and
trailing whitespace removed.

...Hey, why do these all create new Strings...?

Copyright © 2001,2010 Zeegee Software Inc.27A Crash Course in Java

Strings:

Strings are constant!
There's no way to actually modify a String.

– Rationale: when you know object is constant,
tremendous amount of optimization is achievable, esp.
in a multithreaded environment.

– Since many apps are string-heavy, this gives major
performance gains.

– Think of this classname as really being
"StringConstant".

• So how do you change a String?
– Assign contents to StringBuffer, modify that, and

assign it back...

Copyright © 2001,2010 Zeegee Software Inc.28A Crash Course in Java

(new StringBuffer())
.append("Hello ").append(pPerson).append('\n')
.toString()

Strings:

java.lang.StringBuffer
• Editable String-like object.

• Lacks many "interesting" methods of String.

• Primarily append(x) and insert(index, x):
– Work for most primitive types x, and also any Object

(stringified with toString()).

– Return this; can method-chain for efficiency.

– This is how + really works! Compiler translates:

"Hello " + pPerson + '\n'

Copyright © 2001,2010 Zeegee Software Inc.29A Crash Course in Java

Strings:

StringBuffer optimization
• Predeclare approx size in constructor.

– Minimizes reallocs.

– Especially important for many small appends.

• Defer toString() until "edits" are done.
– StringBuffer's toString() does copy-on-write:

lets new String share its internal char buffer,
copies buffer only if subsequent edits made.

– If no edits, no copy!

• Don't mix appends with + .
– Redundant and inefficient. Pick one or the other.

Copyright © 2001,2010 Zeegee Software Inc.30A Crash Course in Java

Strings:

Beware substrings!
To avoid unnecessary memory allocations,
substring() returns String with start/end
"pointers" into parent String.

• Perfectly legit, since Strings are constant.
(See? Optimizations abound!)

• However, that means parent can't be garbage-
collected until all children are gone!

static String[] prefix = new String[10000];
...
while (aVeryLongLine = readLine(input)) {

prefix[i++] = aVeryLongLine.substring(1, 3);
}

Copyright © 2001,2010 Zeegee Software Inc.31A Crash Course in Java

Strings:

Constructing safer substrings
• Solution is simple: create copy of substring and

let substring be GC'ed:

while (aVeryLongLine = readLine(input)) {
prefix[i++] = new String(aVeryLongLine.substring(1, 3));

}

Copyright © 2001,2010 Zeegee Software Inc.32A Crash Course in Java

Strings:

"Subclassing" strings
• String and StringBuffer are final classes: you

can't subclass them.

• Problem: weak typing leads to accidents:

• Solution: wrap class around String.

// Set country (US, GB, CA...):
public void setCountry(String pCountryCode) { ... }

address.setCountry("USA"); // d'oh! can't stop this!

public class CountryName {
private String mText;
public String toString() { return mText; } ...

Copyright © 2001,2010 Zeegee Software Inc.33A Crash Course in Java

Strings:

Strings vs. byte[]s
• Some String methods punt on the chars-are-not-

bytes issue: they have been deprecated.

• Remember character-encoding!
If converting between Strings and bytes, do one of
these...

– Affirm in comments that you really do want to
convert based on current locale's default character-
encoding (e.g., "UTF8")

– Specify character-encoding explicitly (last arg).

while (aVeryLongLine = readLine(input)) {
prefix[i++] = new String(aVeryLongLine.substring(1, 3));

}

Copyright © 2001,2010 Zeegee Software Inc.34A Crash Course in Java

Strings:

Project: sprintf
Java lacks C's sprintf().
Write code for this very
convenient utility.

• You had at least two
possible strategies: static
vs. non-static method.
Which seemed best, and
why?

• How did you deal with
variable-length argument
lists?

• Did you consider
internationalization?
If so, did it have an affect
on your implementation?

